C++ Blog

C++0x Concepts Contd..

Posted in c++0x, templates by Umesh Sirsiwal on January 18, 2009

In previous article we had discussed BCCL. This post continues to discuss Concept with ConceptC++. The ConceptC++ was the playground for language level Concept ideas which eventually became part of currently proposed C++0x standard. In this post we take in-depth view to ConceptC++. These extensions were implemented by modifying GCC.


Unlike the Boost Concept Check Library (BCCL), which is implemented purely using standard C++ constructs, these extensions are implemented by extending C++ language. By changing the C++ definition, it is possible to do things which was not possible otherwise. In particular, remember that with BCCL, it was not possible to make template parameter restriction part of template or function definition. With ConceptC++, this becomes now possible. In addition to enforcing restriction on instantiation of template, ConceptC++ also imposes restrictions on template implementation and makes sure that it only uses template parameter’s facility defined in the contract.

To understand ConceptC++, let us consider sum template which adds two parameters and returns the value:

template <typename T>
T sum(T a, T b){
   return a+b;

With Concept C++ we can rewrite this to:

template <CopyConstructable T>
T sum(T a, T b){
   return a+b;

This says T must be copy constructable. If we compile this template using ConceptC++ (even without any instantiation) we get the following error:

error: no match for 'operator+' in 'a+b'

That is because the template definition did not require T to implement operator+ but is trying to use it. This forces template signature to accurately define the template signature as:

template <CopyConstructable T>
  requires Addable<T>
T sum(T a, T b){
   return a+b;

In other words ConceptC++ puts restrictions on both template instantiation and template definition and binds them in a contract with respect to template parameter. This is what function, class or template definition, etc. are supposed to be.

We have been using magic words like CopyConstructable, Addable, etc. What are they? Are they new language features or are provided by library? What if we wanted to implement our own custom concepts? How will we go about that.

The C++ language addition provides capability to define new concepts while the library provides set of standard concepts. It is rather easy to build your own concept. For example let us look at definition of Addable concept:

auto concept Addable<typename T> {
  T operator+(T x, T y);

How simple can that be? The above definition is saying that the Addable concept implies that the template parameter must implement operator+ which takes two parameters of type T and returns T.

With this background, let us modify out example sort template. In case of sort, the template parameters are iterators and value pointed to by the iterator must implement less than operator. With ConceptC++ you can specify these restrictions as follows:

#include <concepts>
template<std::ForwardIterator T>
    requires LessThanComparable<T::value_type>
void sort(T b, T e)

As you can see ConceptC++ provides natural way of definining restrictions on template parameters allowing compilers to perform early error checking.


The ConceptC++ implements its functionality by reducing compile speed. However, just like BCCL the ConceptC++ does not incur any run time overhead.

2 Responses

Subscribe to comments with RSS.

  1. Kelly Brown said, on June 12, 2009 at 9:29 pm

    Hi, interest post. I’ll write you later about few questions!

  2. GarykPatton said, on June 16, 2009 at 12:05 pm

    Hello, can you please post some more information on this topic? I would like to read more.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: